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a b s t r a c t

Flexible discrete location problems are a generalization of most classical discrete locations
problems like p-median or p-center problems. They can be modeled by using so-called
ordered median functions. These functions multiply a weight to the cost of fulfilling the
demand of a customer, which depends on the position of that cost relative to the costs of
fulfilling the demand of other customers.

In this paper a covering type of model for the discrete ordered median problem is
presented. For the solution of this model two sets of valid inequalities, which reduces
the number of binary variables tremendously, and several variable fixing strategies are
identified. Based on these concepts a specialized branch & cut procedure is proposed and
extensive computational results are reported.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Location Analysis is one of the most active fields in Operations Research. Especially, discrete location problems have been
widely studied due to their importance in practical applications and also due to their interesting structural properties (see for
example [1–3] and references therein). Discrete location problems typically involve a finite set of sites at which facilities can
be located, and a finite set of clients, whose demands for service or goods have to be fulfilled by these facilities. The simplest
and well studied discrete location problems are the discrete p-Median Problem and the Uncapacitated (and Capacitated)
Facility Location Problem (see [4,5]). Evidently many extensions of these basic location problems have been developed. The
extensions range from capacity restrictions, over multi-echelon structures (see [6]), to time dynamic models and models
with choice of facilities (see [7]). Recently several articles have been published addressing strategic supply chain decisions
in the context of location problems (see [8] and references therein). This development led to a highly flexible and general
framework of location models in terms of side constraints.

Another important aspect of a location model is the right choice of the objective function, and in most classical location
models the objective function is the main differentiator. Therefore, a great variety of objective functions has been considered.
The median objective is to minimize the sum of the costs of fulfilling all demand requests from clients. The center objective
is to minimize the maximum cost of fulfilling the demand of a client, from amongst the sites chosen, over all clients. The
centdian objective is a convex combination of median and center objectives; it aims to keep both the average cost behavior
as well as the highest cost in balance. Despite the fact that all three objectives (and some more) are frequently encountered
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in the literature (see for example [1,2]), not much has been done in the direction of a unified framework for handling all
these objectives.

The increasing need for discrete location models in strategic supply chain planning, see for example [8], has made it
necessary to develop new and flexible location models. To that end, [9] introduced a new type of objective function which
generalizes the most popular objective functions mentioned above. This objective function applies a penalty to the cost of
fulfilling the demand of a client which is dependent on the position of that cost relative to the costs of supplying other
customers. For example, a different penalty might be applied if the cost of supplying the client was the 5th-most expensive
cost rather than the 2nd-most expensive. It is even possible to neglect some customers by assigning a zero penalty. This adds
a “sorting”-problem to the underlying facility location problem, making formulation and solution much more challenging.

For planar and network location problems the generalized model was studied in [10–12]. The research in this area even
led to a recent monograph, see [13]. In [9], a formulation of the discrete case, later called the Discrete Ordered Median
Problem, is discussed. Starting with a nonlinear formulation, several linearizations were developed. Structural results as
well as a specially tailored branch and bound procedure are presented in [14]. Moreover, modeling and solution approaches
for special cases in which the objective can be represented as a sum of k-centrum objectives are given in [15].

However, none of these approaches leads to satisfactory results concerning solution times of even medium size instances.
Therefore, we provide a different formulation which is based in part on the idea of sorting radii already used in [16] (see
also [17]) and, recently, by [18] for modeling the p-center problem. This new formulation will be the basis of our specialized
branch & cut approach. In this context, we use a heuristic approach developed in [19], to get good upper bounds. This
heuristic is based on Variable Neighborhood Search, first introduced in [23], and by employing this heuristic, high quality
heuristic solutions for up to 900 possible locations can be obtained.

The rest of the paper is organized as follows. First we will recall the Discrete Ordered Median Problem formally and give
a new mathematical programming formulation. In Section 3 we strengthen the initial formulation by using variable fixing
and by adding valid inequalities. These results are put together in Section 4 to get a specialized Branch & Cut approach. In
Section 5 we will show the efficiency of the described approach by reporting on extensive numerical experiments. The paper
ends with some conclusions and an outlook to future research.

2. The Discrete Ordered Median Problem

In order to introduce the Discrete Ordered Median Problem (DOMP) formally, we define a set V of M discrete locations.
These locations represent clients as well as potential plant locations.

Moreover, let C = (cij) (i, j = 1, . . . ,M) be a non-negative M ×M cost matrix, where cij denotes the cost of satisfying the
total demand of client i from a plant at location j. Thereby, we assume that cii = 0 (∀ i = 1, . . . ,M). This property of C is
called free self-service (FSS) and will be needed for some of the subsequent results. For i 6= j we assume cij > 0.

Let N with 1 ≤ N ≤ M − 1 be the number of new plants which have to be located at the candidate sites. Then the costs
for satisfying the demand of the respective clients, given a feasible solution X ⊂ V with |X| = N, can be represented by the
following vector

c(X) := (c1(X), . . . , cM(X)) with ci(X) = min
j∈X
{cij} ∀ i ∈ V.

However, due to the desired flexibility, c(X) cannot directly be used to define the objective function of the DOMP. Instead,
consider a permutation σX on {1, . . . ,M} for which the inequalities

cσX(1)(X) ≤ cσX(2)(X) ≤ · · · ≤ cσX(M)(X)

hold. Using this permutation we define the sorted cost vector c≤(X) corresponding to a feasible solution X as follows:

c≤(X) := (cσX(1)(X), . . . , cσX(M)(X))

or for short

c≤(X) := (c(1)(X), . . . , c(M)(X)).

Furthermore, let λ = (λ1, . . . ,λM) be an M-dimensional vector, with λi ≥ 0 (∀ i = 1, . . . ,M) representing a weight on the
i-th lowest component of the cost vector c(X). With respect to these assumptions the DOMP is defined as:

min
X⊂V
|X|=N

fλ(X), (1)

with

fλ(X) =
M∑
i=1

c(i)(X) · λi. (2)

The function fλ(X) is called ordered median function (omf). An example illustrating the structure of the DOMP and the
calculation of the ordered median function is given below.
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Table 1
Modeling possibilities

λ fλ(X) Meaning

(1, . . . , 1)
∑M

i=1 ci(X) N-median

(0, . . . , 0, 1) max1≤i≤M ci(X) N-center

(α, . . . ,α, 1) α ∈ [0, 1] α ·
∑M

i=1 ci(X)+ (1− α) ·max1≤i≤M ci(X) α-centdian

(0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
k

)
∑M

i=M−k+1 c(i)(X) k-centrum

Example 1. Let V = {1, . . . , 5} and assume that N = 2 plants have to be located. Moreover, let the cost matrix C be as
follows:

C =


0 6 5 4 8
4 0 8 5 7
6 2 0 8 5
6 5 4 0 1
5 5 2 6 0

 .

With λ = (2, 0, 1, 1, 0), the unique optimal solution of this problem instance is X = {2, 5}. Therefore, the demands of
locations 1 and 3 are satisfied by plant 2 whereas the demand of location 4 is satisfied by plant 5. Hence, c≤(X) = (0, 0, 1, 2, 6)
and

fλ(X) = 0 · 2+ 0 · 0+ 1 · 1+ 2 · 1+ 6 · 0 = 3.

Note that by using appropriate values for λ, nearly all classical discrete facility location problems can be modeled by
the above definition. In addition, a wide range of new and interesting problems can be derived. Some of these modeling
possibilities are given in Table 1. For a more extensive list the interested reader is referred to [13,20].

Since the DOMP contains the discrete N-median problem, which is N P -hard (see [21]), as a special instance, the DOMP
is N P -hard, too. Moreover, due to the sorting process in the objective function, the above formulation of the DOMP is non-
linear. But different formulations have also been proposed which are quadratic (see [9]) or even linear (see [9] and [14]).
Nevertheless, none of these approaches provides satisfactory results concerning solution times for large problem instances.
Therefore, we will develop a different formulation for the DOMP which is based in part on the idea of [18] for modeling the
N-center problem.

In order to introduce this new formulation we first define G as the number of different non-zero elements of the cost
matrix C. Hence, we can order different values of C in increasing sequence:

c(0) := 0 < c(1) < c(2) < · · · < c(G) := max
1≤i,j≤M

{cij}.

Given a feasible solution (i.e. X ⊂ V , |X| = N) we can use this ordering to perform a sorting process of allocation costs.
Thereby, we omit allocation costs of plant locations, because they are equal to zero anyway. Consequently, we only have to
sort M − N cost elements. This can be done by the following variables (j = 1, . . . ,M − N and k = 1, . . . ,G):

xjk :=
{

1 if the j-th smallest allocation cost is at least c(k),
0 otherwise. (3)

With respect to this definition the j-th smallest cost element is equal to c(k) if and only if xjk = 1 and xj,k+1 = 0. Using
these variables the ordered median function can be reformulated as follows:

Let X be feasible solution, i.e. |X| = N. Then, for j = 1, . . . ,N, C(j)(X) = 0 because of free self service. On the other hand,
if i ∈ {N + 1, . . . ,M}, there exists a 1 ≤ k′ ≤ G so that C(j)(X) = c(k′). Therefore, by choosing values for the xjk-variables
according to their definitions, it holds:

xjk = 1 ∀k = 1, . . . , k′ and xjk = 0 ∀k = k′ + 1, . . . ,G

Hence, by using a telescopic sum, we get

C(j)(X) =
G∑

k=1

(
c(k) − c(k−1)

)
· xjk

and the ordered median function can be written as:

fλ =
M∑
j=1
λj · C(j)(X) =

M−N∑
j=1

G∑
k=1
λN+j · (c(k) − c(k−1)) · xjk. (4)

The role of xjk-variables in the sorting process is further demonstrated by the following example.
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Example 2. We consider the same problem instance as in Example 1. Then, since the sorted cost vector of matrix C is
(0, 1, 2, 4, 5, 6, 7, 8), the values of the xjk-variables corresponding to the optimal solution X = {2, 5} are given by:

x11 = 1; x12 = x13 = x14 = x15 = x16 = x17 = 0 (location 4)

x21 = 1; x22 = 1; x23 = x24 = x25 = x26 = x27 = 0 (location 3)

x31 = 1; x32 = 1; x33 = 1; x34 = 1; x35 = 1; x36 = x37 = 0 (location 1).

Furthermore, the objective function value can be calculated by

M−N∑
j=1

G∑
k=1
λN+j · (c(k) − c(k−1)) · xjk = λ3 · (x11 + x12 + 2 · x13 + x14 + x15 + x16 + x17)

+λ4 · (x21 + x22 + 2 · x23 + x24 + x25 + x26 + x27)

+λ5 · (x31 + x32 + 2 · x33 + x34 + x35 + x36 + x37)

= 1 · 1+ 1 · (1+ 1)+ 0 · (1+ 1+ 2+ 1+ 1) = 3.

Next, we are interested in variables reflecting the location decisions of a feasible solution X. In this regard we define for
each row i (i = 1, . . . ,M) of the cost matrix C, Gi as the number of different non-zero elements in this row. Thus, we obtain,
as for the whole matrix C, the ordering

ci(0) := 0 < ci(1) < · · · < ci(Gi)
:= max

j=1,...,M
{cij}

of the cost elements of row i. Then we can define the following variables (i = 1, . . . ,M and k = 1, . . . ,Gi):

zik :=

{
1 if the allocation cost for location i is at least ci(k),
0 otherwise. (5)

In addition, for convenience we define ziGi+1 := 0, for all i = 1, . . . ,M. These definitions imply that, if zik = 1, no plants
are established at locations j with cij < ci(k). Moreover, notice that a plant is opened at location i if and only if zik = 0 for all
k = 1, . . . ,Gi which is due to the fact that the allocation cost of a plant is equal to zero. An example illustrating the meaning
of these variables is given below.

Example 3. We reconsider the data of Example 1 and recall that X = {2, 5} is the optimal solution. Furthermore, consider
the first row in matrix C (i.e. (0 6 5 4 8)). Then the variables z11, z12, z13 and z14 are associated with the sorted non-zero
entries 4, 5, 6 and 8, and they assume, with respect to the optimal solution, the values

z11 = 1, z12 = 1, z13 = 1, z14 = 0,

since location 1 is allocated to the plant at location 2 with a cost of 6. On the other hand, the variables z51, z52 and z53 are all
equal to 0, because there is a plant at location 5.

From the definition of zik it follows that a plant is opened at location i if and only if zi1 = 0, which is equivalent to the
condition 1 − zi1 = 1. Furthermore, one can observe that zik − zik+1 = 1 if and only if the client at location i is allocated
to an open plant at cost ci(k). Hence, we can write the cost for allocating a client at location i to a plant, like in the objective
function, as

Gi∑
k=1

(ci(k) − ci(k−1)) · zik =
Gi−1∑
k=1

ci(k) · (zik − zik+1). (6)

Therefore, the location and allocation decisions can be totally modeled by these variables whereas the following
constraints ensure that only correct values will be assumed:

zik ≥ 1−
∑

j=1,...,M

cij<ci
(k)

(1− zj1) ∀i = 1, . . . ,M, k = 2, . . . ,Gi. (7)

That these constraints indeed accomplish the desired task can be seen as follows. On the one hand, if no plant can be
reached by customer i at a cost less than ci(k) then the constraint for pair (i, k) becomes zik ≥ 1. On the other hand, if a plant
can be reached at a cost less than ci(k) then it holds∑

j=1,...,M

cij<ci
(k)

(1− zj1) ≥ 1,
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Fig. 1. Relationship between z- and x-variables.

and for (i, k) the constraint is redundant. Nonetheless, we still need to guarantee that exactly N plants will be opened among
the M possibilities. This can be ensured by the constraint

M∑
i=1

zi1 = M − N (8)

since zi1 = 0 if and only if there is a plant at location i.
Up to now we have defined two kinds of variables where, for a feasible solution, the xjk can be used to sort allocation

costs and the zik are capable of modeling the location and allocation decisions. However, to obtain the new formulation of
the DOMP we need to link these variables. This can be done by enforcing the number of locations with allocation costs at
least c(k), once represented by xjk- and once by zik-variables, to be equal:

M−N∑
j=1

xjk =
∑

i=1,...,M

lik≤Gi

zilik
∀ k = 1, . . . ,G (9)

where

lik :=

{
min{s : ci(s) ≥ c(k)} if c(k) ≤ ci(Gi)

,

Gi + 1 otherwise. (10)

Observe that these constraints ensure that if zili
k′
= 1 then, given the definition of xjk-variables, there exists at least one j

so that xjk = 1 for all k with c(k) ≤ ci(k′). Because of this, it is guaranteed that xjk-variables take the correct values, according
to the location and allocation decision induced by zik-variables, even if cost elements are missing in the respective rows.

Therefore, values of xjk-variables always represent sorted costs corresponding to the location and allocation decision of
a solution. Furthermore, by using (4) as objective, the ordered median function is minimized.

The relationship between these variables is illustrated by the following example:

Example 4. Given again the problem data of Example 1, the graphic provided in Fig. 1 demonstrates how the z- and x-
variables are linked to each another. Thereby, values for the optimal solution X = {2, 5} have been used.

At last, to complete the new formulation of the DOMP, we need to impose the following group of sorting constraints on
the xjk-variables:

xjk ≥ xj−1k j = 2, . . . ,M − N; k = 1, . . . ,G. (11)
Summarizing the constraints (7)–(9) and (11) and the objective function (4), the DOMP can be formulated as
(DOMP)

Min
M−N∑
j=1

G∑
k=1
λN+j · (c(k) − c(k−1)) · xjk (4)

s.t. zik ≥ 1−
∑

j=1,...,M

cij<ci
(k)

(1− zj1) i = 1, . . . ,M; k = 2, . . . ,Gi (7)

M∑
i=1

zi1 = M − N (8)

M−N∑
j=1

xjk =
∑

i=1,...,M

lik≤Gi

zilik
k = 1, . . . ,G (9)

xjk ≥ xj−1k j = 2, . . . ,M − N; k = 1, . . . ,G (11)

xjk ∈ {0, 1} j = 1, . . . ,M − N; k = 1, . . . ,G (12)

zik ∈ {0, 1} i = 1, . . . ,M; k = 1, . . . ,Gi. (13)
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Remark 1. Note that there may be feasible, and even optimal, solutions for the model (DOMP) which, by definition, are
not feasible for the problem. For example, in the case of some λ-values being 0, a zik-variable may be equal to 1 even if zik′ ,
k′ < k, is already equal to 0. However, for each of these solutions a feasible solution for the problem can be derived easily
by allocating locations according to location decisions, i.e. the values of the zi1-variables.

Since the proposed formulation contains O(M3) binary variables and O(M3) constraints, fast solution times for large
problem instances, using standard software-tools, are very unlikely (see Section 5. Therefore, we propose a specialized
branch & cut procedure and several variable fixing strategies, exploiting the special structure of the presented model.

Remark 2. With respect to the definition of the xjk- and zik-variables there are two more groups of sorting constraints which
have to be satisfied. Namely,

• If the j-th smallest positive allocation cost is at least c(k), it is also at least c(k−1):

xjk−1 ≥ xjk j = 1, . . . ,M − N; k = 2, . . . ,G (14)

• If the allocation cost of location i is at least ci(k), it is also at least ci(k−1):

zik−1 ≥ zik i = 1, . . . ,M; k = 2, . . . ,Gi. (15)

If the model given by (DOMP) is optimized, these constraints are fulfilled automatically. However, they are needed for
some of the variables fixing strategies detailed in the next section.

3. Variable fixing and valid inequalities

In this section we describe a number of variable fixing possibilities which are useful in the overall solution process. More-
over, a group of valid inequalities is introduced which leads to a specialized branch & cut procedure for solving the DOMP.

First of all, the following proposition states that we only need to enforce zi1-variables (i = 1, . . . ,M) to be binary:

Proposition 1. In (DOMP), zik ∈ {0, 1} can be replaced by 0 ≤ zik ≤ 1 for i = 1, . . . ,M and k = 2, . . . ,Gi, since each optimal
solution of the relaxed problem leads to an optimal solution of the original problem, too.

Proof. Let (x̃, z̃) be an optimal solution of (DOMP) with zik ∈ {0, 1} replaced by 0 ≤ zik ≤ 1 for i = 1, . . . ,M and
k = 2, . . . ,Gi. If all variables in (x̃, z̃) are binary, we are done. Otherwise, there are at least two pairs of indices (i′, k′) and
(i′′, k′′) (i′, i′′ ∈ {1, . . . ,M} and k′, k′′ ∈ {2, . . . ,Gi}) so that 0 < z̃i′k′ , z̃i′′k′′ < 1. This is because of the Constraints (9) and all
x̃jk-variables being binary. Moreover, for these variables the Constraints (7) reduce zi′k′ ≥ 0, since zi1 ∈ {0, 1} (i = 1, . . . ,M).
Hence, fractional variables can be changed to 0 without violating these constraints. However, in order to maintain feasibility,
some of the x̃jk-variables have to be reduced to 0 as well. But obviously, this can be done without violating any constraints
and without increasing the objective function value, because λN+j ·(c(k)−c(k−1)) (j = 1, . . . ,M−N and k = 1, . . . ,G) is always
greater than or equal to 0. Therefore, we obtain a new solution which is feasible, optimal and fulfills all binary constraints.

�

Furthermore, some of the x- and z-variables can be fixed to 0 or 1 in a preprocessing step. For some of these variable fixing
strategies an upper bound on the optimal objective value is needed, which can be obtained, for example, by the Variable
Neighborhood Search (VNS) presented in [13,19].

3.1. Fixing xjk-variables to 1

Following the definition of the xjk-variables, we first observe that xj1 = 1 for j = 1, . . . ,M − N. This is true because if a
location has to be allocated, the corresponding cost is at least c(1) (i.e. the smallest positive element in C). Now assume, for
fixed j and k with 1 ≤ j ≤ M − N and 2 ≤ k ≤ G, that xjk = 0. Moreover, we define a set L as follows:

L :=
{
i ∈ {1, . . . ,M} : lik = 1

}
.

Then, a solution with xjk = 0 can only be feasible if it holds:

M − N − j ≥
M−N∑
j′=1

xj′k =
∑

i=1,...,M

lik≤Gi

zilik
≥ |L| − N. (16)

Thereby, the first inequality is due to the definition of the xjk-variables:

xjk = 0⇒ xj′k = 0 ∀ j′ ≤ j.

Therefore, at most M − N − j xj′k-variables can be equal to 1 if xjk = 0. In addition, the second inequality follows from the
fact that |L| is the number of locations the smallest allocation costs of which are at least c(k). Hence, in a feasible solution, the
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Fig. 2. Illustration of cost radius ci
(k−1)

around location i.

number of locations which are allocated with costs at least c(k) has to be at least |L| − N, since at N locations a facility could
be opened. At last, the equation in the middle follows from (9).

Consequently, if (16) does not hold (i.e. M − j < |L|), a solution with xjk = 0 can never be feasible. Thus, in this case, xjk
has to be equal to 1.

Using this test, each xjk-variable can be checked, whether it has to be equal to 1 or not. However, not all combinations of
j and k need to be tested as indicated by the subsequent remark.

Remark 1. If xjk has been fixed to 1 (applying the test of this subsection), then xj′k′ = 1 for j′ = j + 1, . . . ,M − N and
k′ = 1, . . . , k− 1, too. This follows directly from the definition of the xjk-variables.

3.2. Fixing xjk-variables to 0

In order to derive a test for fixing some of the xjk-variables to 0, we first assume that xjk = 1 (for some fixed j (1 ≤ j ≤ M−N)
and k (1 ≤ k ≤ G)). On the one hand, this means that the j-th smallest allocation cost is at least equal to c(k). Therefore, the
(j + 1)-th to (M − N)-th smallest allocation costs are also at least c(k), and hence, xj′k = 1 for j′ = j + 1, . . . ,M − N. On the
other hand we know that xj′1 = 1 for all j′ = 1, . . . , j − 1 (see Section 3.1). Given this information, it is easy to see that the
following expression provides a lower bound on the optimal objective value for the case where xjk = 1:

c(1) ·

(
j−1∑

l=N+1
λl

)
︸ ︷︷ ︸

(∗)

+ c(k) ·

(
M−N∑
l=j

λl

)
︸ ︷︷ ︸

(∗∗)

. (17)

(∗) The 1-st to (j− 1)-th smallest allocation costs are at least c(1).
(∗∗) The j-th to (M − N)-th smallest allocation costs are at least c(k).

This lower bound can now be compared to the upper bound mentioned above or another heuristic. Then, if the lower bound
for the case xjk = 1 is greater than the upper bound, a solution with xjk = 1 can never be optimal. Thus, xjk can be fixed
to 0 without losing any optimal solution. Moreover, by the following remark, this test needs not to be executed for all
combinations of j and k.

Remark 2. If xjk has been fixed to 0 (applying the test of this subsection), then xj′k′ = 0 for j′ = 1, . . . , j and k′ = k, . . . ,G,
too. This follows directly from the definition of the xjk-variables.

3.3. Fixing zik-variables to 0

As in the previous section, assume that zik = 1 for some fixed 1 ≤ i ≤ M and 1 ≤ k ≤ Gi. Then we know, for an associated
feasible solution, that no plant (including plant i) is opened within cost radius ci(k−1) around location i. Otherwise, location i
would be allocated to such a plant and zik would be equal to 0. Consequently, facilities can only be opened at locations lying
outside this cost radius. This set of locations we denote by W (see Fig. 2).

If now, on the one hand, the cardinality of W is less than N, it is easy to observe that a solution with zik = 1 can never be
feasible, since exactly N facilities have to be located. Moreover, if on the other hand the cardinality of W is greater than or
equal to N, we can again derive a lower bound on the optimal objective value for the case zik = 1. For that purpose we define
a cost vector c̃(W) = (c̃1(W), . . . , c̃M(W)) in the following way:

c̃i′(W) =


min

j∈W\{i′}
{ci′ j} if i′ ∈ W

min
j∈W
{ci′ j} otherwise. (18)
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This cost vector contains, for each i′ ∈ V , the smallest cost for allocating location i′ to a possible plant in W (which is not i′

itself). If we now change the N largest entries of this vector to 0 (i.e. we assume a plant is located there), c̃(W) contains only
the costs which have at least to be paid if zik = 1. Therefore, the scalar product < λ, c̃≤(W) >, whereas c̃≤(W) is equal to
c̃(W) with elements sorted in non-decreasing sequence, provides a lower bound for the case zik = 1. Hence, this lower bound
can be compared to a given upper bound and in case it is greater zik has to be equal to 0 in any optimal solution. However,
this test has again not to be performed for all i and j:

Remark 3. If zik has been fixed to 0 (applying the test of this subsection), then zik′ = 0 for k′ = k, . . . ,Gi, too. This follows
directly from the definition of the zik-variables.

3.4. Valid Inequalities

In designing the specialized branch & cut procedure for the new formulation of the DOMP, the following family of
inequalities turned out to be very useful. The subsequent proposition proves that they are valid for the proposed formulation.

|A|∑
j=1

x(M−N+1−j) k ≥
∑
i∈A

lik≤Gi

zi lik
∀ A ⊂ V, |A| ≤ M − N; k = 2, . . . ,G. (19)

Proposition 2. The family of inequalities (19) is valid for the formulation of the DOMP given in Section 2, i.e. they are fulfilled for
all feasible solutions.
Proof. Let (x̃, z̃) be a feasible solution for the formulation of the DOMP given in Section 2. Moreover, letA ⊂ V with |A| ≤ M−N
and k = 2, . . . ,G be arbitrarily chosen. Then by (11) it holds:

|A|∑
j=1

x̃(M−N+1−j) k = min
{
|A|,

M−N∑
j=1

x̃j k

}
.

On the other hand, we know by (9) and 0 ≤ z̃ik ≤ 1 that∑
i∈A

lik≤Gi

z̃i lik
≤

M−N∑
j=1

x̃j k and
∑
i∈A

lik≤Gi

z̃i lik
≤ |A|.

Thus,
|A|∑
j=1

x̃(M−N+1−j) k ≥
∑
i∈A

lik≤Gi

z̃i lik
. �

Furthermore, apart from being valid for the proposed formulation, the inequalities (19) can be used to replace binary
restrictions on xjk-variables. This statement is proved by the following proposition.

Proposition 3. If a feasible solution satisfies zik ∈ {0, 1} for all i = 1, . . . ,M and k = 1, . . . ,Gi, then the family of Valid
Inequalities (19) enforces xjk to be binary for all j = 1, . . . ,M − N and k = 1, . . . ,G as well.
Proof. Let (x̃, z̃) be feasible for (7)–(11), zik ∈ {0, 1} for all i = 1, . . . ,M and k = 1, . . . ,Gi. Take k′, 1 ≤ k′ ≤ G, arbitrary but
fixed. Moreover, let∑

i=1,...,M

li
k′
≤Gi

zi li
k′
= q ∈ Z+0 .

Then, if q = 0, Constraints (9) imply xjk = 0 for all j = 1, . . . ,M− N. Otherwise, if q = 1, the Valid Inequalities (19) imply
(with |A| = 1) that

x̃M−N k′ ≥ max
i=1,...,M

{z̃ili
k′
} = 1,

and thus x̃M−N k′ = 1. Furthermore, if q > 1, again the Valid Inequalities (19) imply (with |A| = 2) that

x̃M−N k′ + x̃M−N−1 k′ ≥ max
i,r=1,...,M

{z̃ili
k′
+ z̃rlr

k′
} = 2,

which yields x̃M−N−1 k′ = 1. Repeating the same argument one can observe that x̃M−N−2 k′ to x̃M−N−(q−1) k′ have also to be equal
to 1. At last, by Constraints (9), x̃N−M−q k′ to x̃1 k′ have to be equal to 0, which completes the proof. �

Given Propositions 1 and 3, the DOMP can be formulated as a mixed-integer linear program with only M binary variables
(zi1 for all i = 1, . . . ,M). However, as the family of Valid Inequalities (19) is exponential in size, a solution, using standard
software-tools, seems not to be appropriate. Therefore, the next section is dedicated to a specialized branch & cut procedure,
which applies the valid inequalities dynamically whenever they are violated.
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4. Specialized branch & cut

As already explained in the previous section, a solution for the presented model of DOMP can be found using a branch &
cut procedure with only M binary variables, whereas Valid Inequalities (19) are added whenever they are needed. Thereby,
the solution of a subproblem of the branching tree can be obtained as follows:

(1) Solve the LP-relaxation.
(2) Add, for each 2 ≤ k ≤ G, all (or some) violated cuts of type (19) (if there are any). If some cuts have been added, goto

Step 1.

However, because of the exponential size of (19), adding all violated cuts in each iteration proved to be inefficient.
Therefore, only cuts of a specific type have been tested and, if violated, added.

Let 2 ≤ k ≤ G and x̃ and z̃ be the solution of the linear relaxation of a node in the branching tree. Moreover, let j0 be the
largest index so that x̃j0k = 0 and let j1 be the smallest index so that x̃j1k = 1. In addition, let z̃≥lk be the vector of z̃ilik variables
with lik ≤ Gi and sorted in non-increasing order. Then, for each j0+ 2 ≤ j∗ < j1 with M−N− (j∗− 1) being less than or equal
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Table 2
Tested modeling vectors

λ λ

T1 (1, . . . , 1) T6 (1, 0, 1, 0, . . . , 1, 0, 1, 0)

T2 (0, . . . , 0, 1) T7 (. . . , 0, 1, 1, 0, 1, 1)

T3 (0, . . . , 0, 1, . . . , 1) T8 (. . . , 0, 0, 1, 0, 0, 1)

T4 (0, . . . , 0, 1, . . . , 1, 0, . . . , 0) T9 (0.1, 0.2, . . . ,M/20,M/20, . . . , 0.2, 0.1)

T5 (0, 1, 0, 1, . . . , 0, 1, 0, 1) T10 (M/20, . . . , 0.1, 0.1, . . . , ,M/20)

to the number of elements in z̃≥lk , the following cut has been tested:

M−N∑
j=j∗

xjk ≥
M−N−(j∗−1)∑

i=1

(
z≥lk

)
i
. (20)

Note that these cuts are maximal in some sense, since if they are not violated, no valid inequality of type (19) with
|A| = M− N− (j∗ − 1) is violated. Hence, by Proposition 3, we only need to test them in order to skip binary restrictions on
x-variables. Thus, the specialized branch & cut procedure for solving the proposed model of the DOMP is given in Algorithm 1.

However, the number of cuts which have to be checked in order to omit binary restrictions on x-variables can even be
further reduced. Observe that if for some 2 ≤ k ≤ G not all x̃jk-variables are binary, x̃(j0+1)k has to have a fractional value and,
if z̃≥lk is binary (which will be the case at some point in the branching tree), cut (20) for j∗ = j0+ 2 is violated. Therefore, only
these valid inequalities need to be tested and, furthermore, the test is only necessary if all z-variables are binary.

As can be seen from this discussion, we need, on the one hand, only some cuts of type (20) to replace binary constraints on
the x-variables. This leads to relatively small linear programs in each iteration. On the other hand, adding all cuts of type (20)
leads to better lower bounds in each node. On this account we tested three different cutting strategies (see Section 5.2):

(1) Add each violated cut (20);
(2) Add violated cuts (20) only if j∗ = j0 + 2;
(3) Add violated cuts (20) only if j∗ = j0 + 2 and all z-variables are binary.

Note that the corresponding steps in Algorithm 1 are performed according to the cutting strategy.

5. Numerical results

5.1. Computer and test problems

The branch & cut procedure described in the previous section has been implemented using Visual C++ 7.0. Moreover,
ILOG Concert Technology 2.0 and ILOG CPLEX 9.0 have been used for the implementation and solution of linear programs. All
computational studies have been performed on a PC with a Pentium IV processor with 2.4 GHz and 512 MB of RAM.

In order to test the performance of the proposed solution method, problem instances with eight different λ-vectors have
been used. These λ-vectors are given in Table 2 (for T1–T8 see also [13,19]), where Median (T1), Center (T2), k-Centra (T3)
and k1 + k2-Trimmed Mean (T4) are well known special cases. Furthermore, for each of these λ-vectors problem instances
have been generated with M = 30, 40, 50, 60, 70 and 80 and N = 3, 8 and M/3. In this process, k (in T3) has been set to dM/3e
and k1 and k2 (in T4) have been set to dM/10e.

For each combination of M, N and λ five problem instances have been tested. Thereby, the cost elements of C have been
chosen using a uniform distribution between 1 and 200. Thus, a total number of 900 problems have been used to test the
performance of the proposed method (see Section 5.5).

In addition, the distance matrices of the OR-Lib instances pmed1–pmed5 (see [22]), extended by T1–T10, have been
tested (see Section 5.6).

5.2. Configuration of the specialized branch & cut algorithm

Based on the discussion at the end of Section 4, we wanted to know which of the three possibilities for adding valid
inequalities provides the best performance in solving the respective test problems. Therefore, each of the smallest problem
instances (i.e. M = 30 and M = 40) has been calculated once for each possibility. The results of these computations, for
T2 and T4 (for all other λ-values the results are similar to one of these two), are given in Tables 3–5 whereas the different
possibilities for adding cuts are denoted as follows:

(1) ALL: Add each violated cut (20);
(2) ONE: Add violated cuts (20) only if j∗ = j0 + 2;
(3) ONEBIN: Add violated cuts (20) only if j∗ = j0 + 2 and all z-variables are binary.

In each of these tables the first column contains the number of locations M, the second the respective λ-vectors (T2 or
T4) and the third the number of plants N. The next three columns show the minimal, average (over all five instances) and
maximal solution times (in seconds) for each problem type. Thereby, the first number in each column is the preprocessing
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Table 3
Results for T2 and T4 using ONE

M λ N Min. Ave. Max. # N. # C.

30 T2 3 0.14 / 4.22 0.16 / 8.48 0.19 / 22.66 9 1210
8 0.47 / 0.73 0.64 / 2.99 0.91 / 9.81 60 1656
M/3 0.63 / 1.59 1.00 / 3.69 1.66 / 8.77 112 2287

T4 3 0.19 / 1.02 0.19 / 1.73 0.20 / 3.38 4 251
8 0.63 / 0.81 0.72 / 1.01 0.86 / 1.39 4 158
M/3 0.86 / 1.06 1.12 / 1.53 1.31 / 2.14 9 223

40 T2 3 0.31 / 15.94 0.37 / 99.70 0.45 / 263.64 27 3918
8 1.02 / 1.84 1.29 / 12.79 2.27 / 40.28 73 2757
M/3 2.80 / 4.78 3.60 / 8.99 5.06 / 19.39 292 3784

T4 3 0.44 / 10.69 0.44 / 15.83 0.45 / 22.05 13 868
8 1.16 / 1.45 1.63 / 3.99 2.59 / 9.63 12 383
M/3 3.41 / 3.45 3.94 / 4.18 4.69 / 5.44 3 104

Table 4
Results for T2 and T4 using ONEBIN

M λ N Min. Ave. Max. # N. # C.

30 T2 3 0.13 / 1.14 0.16 / 1.73 0.19 / 3.09 10 280
8 0.41 / 0.69 0.57 / 1.83 0.81 / 5.39 61 1323
M/3 0.61 / 1.61 0.95 / 3.44 1.56 / 8.95 171 2944

T4 3 0.17 / 0.97 0.18 / 1.30 0.19 / 2.00 3 203
8 0.61 / 0.77 0.68 / 0.95 0.80 / 1.22 6 134
M/3 0.80 / 0.97 1.08 / 1.28 1.30 / 1.50 6 142

40 T2 3 0.30 / 3.72 0.35 / 11.95 0.44 / 25.17 28 720
8 0.95 / 1.41 1.23 / 4.32 2.16 / 9.83 84 1552
M/3 2.70 / 4.20 3.50 / 11.06 4.89 / 28.58 578 6039

T4 3 0.42 / 7.77 0.43 / 14.25 0.44 / 18.61 18 1201
8 1.09 / 1.39 1.60 / 4.15 2.69 / 10.67 29 636
M/3 3.34 / 3.38 3.84 / 4.04 4.55 / 5.09 4 88

Table 5
Results for T2 and T4 using ALL

M λ N Min. Ave. Max. # N. # C.

30 T2 3 0.13 / 25.95 0.15 / 119.59 0.17 / 342.61 7 9 532
8 0.42 / 0.77 0.59 / 3.81 0.84 / 13.80 24 3 044
M/3 0.61 / 1.47 0.94 / 2.62 1.56 / 5.38 26 2 090

T4 3 0.17 / 2.45 0.18 / 6.38 0.19 / 17.00 3 1 939
8 0.61 / 0.81 0.68 / 1.06 0.81 / 1.47 4 432
M/3 0.81 / 0.97 1.07 / 1.40 1.27 / 1.92 6 370

40 T2 3 0.30 / 1014.73 0.35 / 2800.31 0.45 / 4585.02 17 34 790
8 0.97 / 2.84 1.25 / 54.62 2.20 / 221.05 27 7 287
M/3 2.78 / 3.44 3.46 / 5.42 4.83 / 8.16 34 2 147

T4 3 0.42 / 36.86 0.43 / 122.47 0.45 / 244.50 11 7 685
8 1.08 / 1.50 1.54 / 9.17 2.45 / 33.44 13 1 915
M/3 3.27 / 3.30 3.82 / 3.99 4.55 / 5.03 2 222

time and the second number (in bold face) the total solution time. The last two columns represent the average number of
nodes in the branching tree (# N.) and the average number of cuts which have been applied (# C.).

As can be observed, for T2 and N = 3–8 the possibility ONEBIN provides the best performance. Thereby, it is better than
ONE (e.g. 11.95–99.70 for M = 40 and N = 3) and much better than ALL (e.g. 11.95–2800.31 for M = 40 and N = 3).
Moreover, it can be seen that for these problem instances adding as few cuts as possible leads to much better solution times
(e.g. 720 (ONEBIN) to 3918 (ONE) to 34790 (ALL) for M = 40 and N = 3). More or less the same effect (i.e. ONEBIN has the
best performance) can be observed for T4 and N = 3–8 even though not so distinctive. Because of these results we decided
to use the possibility ONEBIN for the solution of the test problems with N = 3 and N = 8. On the other hand, for N = M/3,
possibility ALL seems to have the best performance. However, the differences for N = M/3 between ALL, ONE and ONEBIN
are rather small. Therefore, we compared the solution times for ALL and ONEBIN for M = 50 and N = M/3, too (see Table 6).
Note that ONE has not been tested since the performance for M/3 is very similar to the one of ONEBIN. Table 6 has the same
structure as the Tables 3–5 and its first part contains the results for ONEBIN whereas the second part shows the results for
ALL. From these results it is easy to see that, at least for T2, solution times for ALL are much better than those for ONEBIN.
Furthermore, the maximal solution time for T2 with ONEBIN is 3600 s which is the time limit that has been applied. Hence,
some instances cannot be solved within the time limit using ONEBIN and so we decided to use the possibility ALL for test
problems with N = M/3.

Apart from adding a different number of cuts, the special case T2 (with N = 3–8) is sensitive with respect to the initial
upper bound. In this regard, running the VNS of [19] three times to get the initial upper bound (with different starting
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Table 6
Results for T2 and T4 (M = 50) using ONEBIN resp. ALL

M λ N Min. Ave. Max. # N. # C.

50 T2 M/3 5.91 / 8.75 8.05 / 1467.37 12.27 / 3600 6207 58 298
T4 M/3 10.02 / 10.80 12.62 / 18.64 16.13 / 29.97 141 1 467

50 T2 M/3 6.02 / 9.31 8.11 / 28.29 12.33 / 42.95 109 8 740
T4 M/3 10.05 / 10.34 12.61 / 16.17 16.08 / 29.25 36 1 477

Table 7
Results for CPLEX and CPLEX + Var. Fix compared to B.&C.

M λ N CPLEX CPLEX + Var. Fix. Spec. B. & C.

30 T2 3 3600/ 3600 /3600 17.25/ 896.57 /3600 1.14/ 1.73 /3.09
8 21.88/ 64.04 /116.78 0.80/ 1.44 /2.14 0.69/ 1.83 /5.39
M/3 1.30/ 12.50 /23.86 0.73/ 1.19 / 1.66 1.47/ 2.62 /5.38

30 T4 3 61.69/ 1565.19 /3600 8.48/ 15.96 /36.44 0.97/ 1.30 /2.00
8 1.14/ 15.29 /36.44 0.81/ 1.20 / 2.13 0.77/ 0.95 /1.22
M/3 0.48/ 2.58 /6.52 0.88/ 1.44 / 1.95 0.97/ 1.40 /1.92

40 T2 3 3600/ 3600 /3600 3600/ 3600 /3600 3.72/ 11.95
/25.17

8 120.64/ 1270.98 /3600 3.72/ 720.73 /3600 1.41/ 4.32 / 9.83
M/3 6.72/ 13.76 /21.30 2.97/ 3.80 /5.20 3.44/ 5.42 / 8.16

40 T4 3 3600/ 3600 /3600 772.17/ 2204.36 /3600 7.77/ 14.25
/18.61

8 2.52/ 203.74 /722.73 1.78/ 10.06 /20.06 1.39/ 4.15 /10.67
M/3 0.64/ 2.77 /10.20 3.36/ 3.93 / 4.73 3.30/ 3.99 /5.03

Note that again a time limit of 3600 s has been used.

solutions), instead of once, sometimes reduced the total solution time by a factor of ten or more. Therefore, for T2 and
N = 3–8, this possibility has been implemented. For all other λ-vectors and for N = M/3 this strategy does not lead to better
solution times.

Summarizing the results of this section we conclude that for problems with a small number of plants (i.e. N is small
compared to M) it is better to use as few cuts as possible to keep the linear programs in each iteration as small as possible.
For these types of problems the lower bound improvement seems not to be a crucial advantage. By contrast, if N gets larger
the improvement of the lower bound becomes more and more important and is sometimes even necessary to obtain an
optimal solution in reasonable time.

5.3. Strength of the variable fixing and the valid inequalities

Given the results of the previous section it is also interesting to see whether the specialized branch & cut procedure, in its
best configuration, provides better solution times than just using CPLEX for the solution of the basic problem or using CPLEX
after applying the variable fixing strategies of Sections 3.1–3.3. Therefore, these solution methods were implemented as well
and the test problems with M = 30 and M = 40 were used to compare them with the specialized branch & cut. The outcomes
of these calculations are given in Table 7. In this table the first three columns are the same as in the Tables 3–6. The fourth
column shows the solution times when using just CPLEX, the fifth column when using CPLEX with variable fixing and the
last column when using the branch & cut procedure. In addition, the first number in each column represents the minimal,
the second the average (over all five instances) and the third the maximal solution time. Note that again only the results for
T2 and T4 are given, but they are, as above, representative for more or less every λ-value which has been considered.

Analyzing the entries of Table 7 one can observe that for N = 3 and N = 8 the solution times when using CPLEX are
always worse than those when using CPLEX after applying variable fixing. This is due to the fact that the problems are
much smaller after variable fixing which is substantiated by Table 8 where the average number of fixed variables is given.
Moreover, considering the values for N = 3, it is easy to see that CPLEX without variable fixing was usually not able to find a
solution within the time limit. However, for N = 3 and N = 8, specialized branch & cut provides solution times that are even
better than those of CPLEX plus variable fixing. Thereby, the improvement is sometimes only marginal for small problems
(e.g. M = 30, N = 8 and T4) but for larger problems it is tremendous (e.g. M = 40, N = 3 and T2). One reason for this
improvement is the fact that the Valid Inequalities (19) sometimes close the duality gap considerably. This can be seen in
Table 9 where reduction of the root node gap, after adding violated cuts of type (20), is reported. Nonetheless, the main
reasons for the improvement, especially for small values of N, are Propositions 1 and 3 because they allow to reduce the
number of binary variables to M.

For N = M/3, on the other hand, it is not clear which solution method is the most appropriate. As can be observed from
Table 7 for each alternative there is at least one example where it shows the best performance. In addition, for example for
M = 40 and T4, CPLEX provides the smallest average solution time but it needs 10.20 s for one instance which is twice as
long as the maximal solution time when using CPLEX with variable fixing or the branch & cut. The reason for CPLEX being
much better in solving problems with larger N values seems to be cuts that are added in the root node using the default
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Table 8
Average number of fixed variables

M λ N # x-Var. fixed to 1 # z-Var. fixed to 0 # x-Var. fixed to 0

30 T2 3 167 440 3180
8 99 525 3190
M/3 80 499 2916

T4 3 167 114 3156
8 99 249 2914
M/3 80 262 2635

40 T2 3 164 735 4136
8 110 988 4953
M/3 67 865 3738

T4 3 164 111 4139
8 110 363 4548
M/3 67 525 3450

Table 9
Root node gap improvement

M λ N R.-N. gap (in %) R.-N. gap with cuts (in %) Improvement (in %)

30 T2 3 56 36 20
8 45 20 25
M/3 39 19 20

30 T4 3 10 6 4
8 6 3 3
M/3 5 1 4

40 T2 3 59 39 20
8 51 22 29
M/3 41 19 22

40 T4 3 18 14 4
8 8 5 3
M/3 3 0 3

Table 10
Comparing the solution times with those obtainable by previously published procedures

λ T1 T2 T3 T4 T5 T6 T7 T8

N = 8 [13] and [20] 167.19 13.54 86.44 56.37 160.75 131.82 170.57 151.38
Spec. B. & C. 0.82 2.17 5.99 0.96 1.78 2.64 1.52 3.20

N = 10 [13] and [20] 303.11 6.39 117.02 154.46 242.00 253.11 269.65 188.97
Spec. B. & C. 0.72 2.60 1.81 1.31 1.13 2.28 1.23 2.09

N = 15 [13] and [20] 274.74 4.81 125.19 649.54 209.68 327.44 179.30 101.19
Spec. B. & C. 0.78 1.95 0.96 9.47 1.06 3.84 0.88 1.03

configuration of the solver. These cuts improve the initial lower bound, which is for larger N values sometimes even worse
than for smaller ones, considerably, and hence the total solution time decreases. However, for small values of N these cuts
are not very effective and the specialized branch & cut shows a much better performance.

5.4. Comparison with previous results

To see whether the approach introduced in this work is better suited to solve the DOMP than the already existing solution
procedures or not, Table 10 contains the best average solution times (in seconds) provided by [13,20] for problems with
M = 30 and N = 8, N = 10 and N = 15. Optimal solution times for larger problems are not reported in these works. In
addition, the average (total) solution times (in seconds) for solving problems of the same size using the new approach, are
displayed in Table 10 as well. Thereby, the same computer as for the outcomes given in [13,20] and has been employed.

As can be observed from this table, the average solution times which can be reached by using the specialized branch & cut
procedure, are nearly always at least one order of magnitude lower than those reported in the literature. Only for λ-vectors
of type 2 (i.e. T2), the improvement is less significant.

Hence, the new approach is much better suited to solve the DOMP to optimality than the existing ones.

5.5. Complete results

The complete results for all 900 test instances can be found in the Tables 12–17 in the Appendix. These tables have the
same structure as those of Section 5.2 but with columns added displaying the average gap between the initial heuristic and
the final objective value, the maximum of these values and the average root node gap of the respective problem types (M, N
and λ-vector). Moreover, for each problem type, test instances have been computed using the respective best configuration
(see analysis in Section 5.2).
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Table 11
Results for pmed1–pmed5

M N λ Solution time # N. # C.

pmed1 100 5 T1 9.16/ 23.80 2 156
T2 10.50/ 52.19 10 934
T4 9.17/ 282.41 31 8 451
T9 8.86/ 319.36 33 3 009

pmed2 100 10 T1 20.64/ 24.34 1 107
T2 13.91/ 3600 – –
T4 17.67/ 93.42 10 1 637
T9 17.77/ 70.52 10 310

pmed3 100 10 T1 20.47/ 30.42 5 612
T2 30.56/ 3600 – –
T4 19.03/ 252.70 39 3 807
T9 20.56/ 417.33 103 4 216

pmed4 100 20 T1 104.28/ 160.67 1 120
T2 66.06/ 3600 – –
T4 96.64/ 3600 – –
T9 104.53/ 1100.8 712 22 842

pmed5 100 33 T1 277.41/ 278.03 1 614
T2 227.17/ 3600 – –
T4 249.47/ 3600 – –
T9 290.78/ 3600 – –

As can be observed from these tables, these results are very promising. For nearly all λ-vectors problems can be solved
with M up to 80 in reasonable time (depending on the number of plants N). Only for some λ-vectors (i.e. T3 and T10 and
partly T2) and N values (i.e. N = 3 and N = 8) the outcomes are not really satisfying. For these λ-vectors and M = 70 and
M = 80 an optimal solution cannot be found within the time limit of 3600 s (missing values in Tables 16 and 17). For smaller
M values a solution within the time limit is possible but solution times are quite high compared to those of other λ-vectors.
A reason for this may be the relatively large root node gaps which cannot be closed by the algorithm (in reasonable time)
even if many cuts are added.

Considering the respective solution times in more detail, one can observe that there is sometimes a large difference
between minimal and maximal solution times. But this is not a surprising fact since the size of the model depends on the
number of different values in the distance matrix. Furthermore, it becomes clear that, in principle but not always, solution
times decrease for increasing values of N which is again due to the definition of the model. In addition, root node gaps are
decreasing for increasing values of N as well. Therefore, the hardest problems are those with N = 3 (this can also be seen
in Table 7 for the solution with CPLEX). At last, the number of branch & bound nodes is increasing from N = 3 to N = 8 but
decreasing from N = 8 to N = M/3. For the number of applied cuts, on the other hand, such a behavior cannot be detected.

The average gaps between the initial heuristic and the final objective value show that the heuristic indeed provides very
good approximations. Nonetheless, sometimes the gap is relatively high, especially for T2. For problems with N = 3 and
N = 8, a heuristic solution, using the approach of [13,19], can be found very quickly. On the other hand, for N = M/3 the
heuristic solution time forms the main part of the total solution time. Thereby, a different heuristic which is not so sensitive
with respect to the number of facilities to be located, may lead to even faster solution times.

Summarizing the numerical results, we conclude that the new model and the proposed solution procedure are well suited
for solving the DOMP for a large number of different λ-vectors. Thereby, problem instances can be solved in a reasonable
time (on average within less than 10 minutes) which are (in terms of the value of M) more than twice as large as those that
can be solved by existing optimal solution approaches (see [13,20]).

5.6. Results for pmed1–pmed5

In addition to the problem instances that were generated for testing the performance of the new approach we used
distance matrices of “standard test problems” pmed1–pmed5 (see [22]) in order to see whether the proposed solution
method works for these (larger) problems as well. The results of these computations, for some selected λ-values, are given
in Table 11 whereas the first four columns show the problem instances, the fifth the preprocessing and total solution time
and the last two the number of nodes in the branching tree and the number of applied cuts. Note that for pmed1–pmed4
(pmed5) the possibility ONEBIN (ALL) has been used and that again a time limit of 3600 s has been applied.

Analyzing Table 11 one can observe that, on the one hand, for T1 all problems can be solved relatively fast. Furthermore,
the solution times for pmed2 and pmed3 are a good deal lower than those for T1, M = 80 and N = 8 which may be due
to the fact that the distance matrices of these problems are not symmetric. On the other hand, for T4 and T9, a solution
in reasonable time can only be found for pmed1–pmed3. Moreover, if T2 is chosen as λ-vector only pmed1 can be solved
within the time limit.

Therefore, it seems that with the provided solution method we are, in principle, able to solve even these problems.
However, the size of these test problems already meet our upper size limit and so further research is necessary in this area.
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6. Conclusions and further research topics

In this article we have introduced a new formulation for the Discrete Ordered Median Problem, based on two different
sets of binary variables, z and x. The first set is used to measure the distance between each point and its closest opened
plant, whereas the second set is used to sort all these distances in increasing order, which is necessary to define the ordered
objective function. Making use of this new formulation, a preprocessing phase and a subset of valid inequalities, we are able
to solve the largest instances for the DOMP approached to date.

Although our results imply a significant advance in the resolution of flexible discrete location problems, the new
formulation can only be considered as a starting point inside a new research line. Many possible improvements of the
method here developed come to our minds in a natural way. For instance, it is clear from the shape of our formulation
that most of the variables in the right-hand side of our variables vectors z and x will take value zero in an optimal solution,
since the customers are assigned to the closest opened plant and the right side of the matrix is associated to large distances.
Therefore, either a large part of the formulation can be ignored from the beginning or a column generation method can be
devised. We can also take advantage of the peculiarities of the coefficient vector λ used to define the objective function. In
particular, the formulation can be reduced taking into account the null entries of this vector. More valid inequalities can also
help to reduce the duality gap of the instances.

Lastly, the current formulation and the presented solution procedure is only valid for non-negativeλ entries. If negativeλ-
values occur, several changes have to be made, as, for example, the minimization of the objective does not lead automatically
to the correct values of z- and x-variables. This topic and those mentioned above are the subject of further research activities.
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Appendix

See Tables 12–17.

Table 12
Complete results (M = 30)

M λ N Min. time Ave. time Max. time Ave. H.gap Max. H.gap # N. # C. R.-N. gap

30 T1 3 0.16 / 0.52 0.18 / 1.01 0.19 / 1.64 0.04 0.20 9 472 0.11
8 0.55 / 0.61 0.66 / 0.79 0.75 / 1.19 0.00 0.02 21 478 0.08
M/3 0.75 / 0.77 0.92 / 0.96 1.09 / 1.11 0.00 0.02 4 516 0.04

T2 3 0.13 / 1.14 0.16 / 1.73 0.19 / 3.09 0.05 0.16 12 374 0.59
8 0.41 / 0.69 0.57 / 1.83 0.81 / 5.39 0.01 0.04 65 1 418 0.47
M/3 0.61 / 1.47 0.94 / 2.62 1.56 / 5.38 0.03 0.11 26 2 194 0.40

T3 3 0.19 / 3.95 0.19 / 25.08 0.22 / 44.53 0.01 0.07 112 12 904 0.55
8 0.50 / 1.00 0.59 / 3.69 0.69 / 8.83 0.02 0.08 116 3 126 0.36
M/3 0.73 / 1.00 1.02 / 2.39 1.27 / 6.61 0.00 0.00 16 1 835 0.26

T4 3 0.17 / 0.97 0.18 / 1.30 0.19 / 2.00 0.02 0.09 25 2 783 0.22
8 0.61 / 0.77 0.68 / 0.95 0.80 / 1.22 0.00 0.00 29 759 0.13
M/3 0.81 / 0.97 1.07 / 1.40 1.27 / 1.92 0.00 0.00 9 737 0.11

T5 3 0.19 / 0.89 0.20 / 2.47 0.22 / 4.33 0.00 0.00 14 983 0.15
8 0.58 / 0.98 0.80 / 1.56 1.00 / 2.86 0.00 0.00 34 593 0.12
M/3 0.80 / 1.08 0.98 / 1.62 1.09 / 2.89 0.01 0.02 27 727 0.09

T6 3 0.17 / 1.05 0.18 / 2.76 0.19 / 4.11 0.03 0.17 14 571 0.14
8 0.55 / 1.09 0.68 / 1.88 0.86 / 4.09 0.00 0.02 56 619 0.11
M/3 0.72 / 1.03 0.89 / 2.11 1.20 / 2.92 0.02 0.10 53 939 0.08

T7 3 0.17 / 1.06 0.20 / 2.25 0.22 / 3.55 0.00 0.00 11 464 0.14
8 0.58 / 1.03 0.64 / 1.39 0.72 / 1.97 0.00 0.02 39 635 0.12
M/3 0.75 / 0.95 0.98 / 1.54 1.06 / 2.75 0.00 0.00 29 692 0.08

T8 3 0.19 / 1.83 0.20 / 3.97 0.22 / 8.97 0.00 0.00 18 1 006 0.18
8 0.48 / 1.11 0.57 / 2.86 0.67 / 3.59 0.01 0.03 96 1 751 0.17
M/3 0.77 / 1.67 0.96 / 2.97 1.27 / 6.22 0.01 0.03 77 1 981 0.13

T9 3 0.16 / 0.84 0.18 / 1.07 0.20 / 1.53 0.00 0.00 6 243 0.11
8 0.56 / 0.63 0.70 / 0.82 0.91 / 1.00 0.00 0.00 21 364 0.06
M/3 0.78 / 0.83 1.08 / 1.12 1.67 / 1.69 0.00 0.00 16 404 0.03

T10 3 0.17 / 3.69 0.19 / 8.27 0.20 / 15.02 0.00 0.00 32 1 918 0.27
8 0.53 / 1.11 0.57 / 3.49 0.59 / 5.69 0.02 0.10 75 2 282 0.22
M/3 0.75 / 1.11 0.89 / 3.97 1.05 / 14.20 0.00 0.00 16 2 196 0.17
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Table 13
Complete results (M = 40)

M λ N Min. time Ave. time Max. time Ave. H.gap Max. H.gap # N. # C. R.-N. gap

40 T1 3 0.41 / 4.84 0.44 / 7.75 0.48 / 10.94 0.01 0.03 28 1 435 0.21
8 1.34 / 1.67 1.83 / 2.19 2.77 / 3.31 0.01 0.04 48 1 059 0.09
M/3 3.38 / 3.50 4.37 / 4.41 5.61 / 5.64 0.00 0.00 4 445 0.04

T2 3 0.30 / 3.72 0.35 / 11.95 0.44 / 25.17 0.14 0.32 34 1 007 0.64
8 0.95 / 1.41 1.23 / 4.32 2.16 / 9.83 0.08 0.27 93 1 764 0.53
M/3 2.78 / 3.44 3.46 / 5.42 4.83 / 8.16 0.13 0.30 35 2 236 0.42

T3 3 0.42 / 89.23 0.44 / 131.00 0.47 / 163.30 0.00 0.00 234 22 156 0.61
8 1.09 / 9.42 1.42 / 34.98 2.13 / 68.11 0.02 0.05 564 14 690 0.42
M/3 3.58 / 4.03 4.37 / 11.01 5.69 / 30.13 0.00 0.02 44 4 034 0.27

T4 3 0.42 / 7.77 0.43 / 14.25 0.44 / 18.61 0.01 0.05 65 5 632 0.31
8 1.09 / 1.39 1.60 / 4.15 2.69 / 10.67 0.00 0.00 142 3 574 0.17
M/3 3.27 / 3.30 3.82 / 3.99 4.55 / 5.03 0.00 0.00 11 1 029 0.09

T5 3 0.42 / 7.75 0.45 / 15.87 0.48 / 19.47 0.00 0.02 37 1 784 0.24
8 1.30 / 1.95 1.55 / 2.89 1.97 / 3.78 0.00 0.00 52 955 0.11
M/3 3.52 / 3.78 3.99 / 4.88 4.67 / 5.70 0.01 0.02 39 925 0.08

T6 3 0.41 / 6.47 0.46 / 14.61 0.50 / 21.16 0.00 0.02 28 957 0.21
8 1.11 / 4.23 1.28 / 6.18 1.45 / 10.03 0.01 0.06 83 901 0.11
M/3 3.59 / 4.05 3.80 / 4.65 4.03 / 5.55 0.01 0.06 49 681 0.07

T7 3 0.41 / 6.83 0.44 / 13.91 0.45 / 20.91 0.00 0.00 27 710 0.22
8 1.06 / 2.30 1.45 / 3.28 2.02 / 4.88 0.00 0.00 44 475 0.11
M/3 3.59 / 3.80 4.65 / 5.00 5.97 / 6.17 0.00 0.00 23 433 0.06

T8 3 0.44 / 12.91 0.45 / 25.60 0.47 / 36.05 0.00 0.00 47 2 219 0.26
8 1.25 / 5.23 1.73 / 9.20 2.09 / 13.72 0.00 0.02 144 2 030 0.15
M/3 3.41 / 4.47 5.74 / 7.54 8.98 / 11.27 0.01 0.02 76 1 497 0.10

T9 3 0.41 / 11.22 0.43 / 15.78 0.48 / 20.92 0.01 0.07 27 854 0.22
8 1.02 / 1.31 1.40 / 2.86 1.97 / 4.61 0.00 0.00 46 438 0.09
M/3 3.66 / 3.72 4.15 / 4.19 4.92 / 4.95 0.00 0.00 16 301 0.03

T10 3 0.41 / 41.61 0.44 / 67.59 0.48 / 112.25 0.00 0.01 92 6 652 0.32
8 1.16 / 8.41 1.73 / 16.60 3.45 / 40.03 0.00 0.00 214 5 158 0.24
M/3 3.52 / 4.20 4.90 / 7.32 6.95 / 11.27 0.00 0.00 14 1 835 0.17

Table 14
Complete results (M = 50)

M λ N Min. time Ave. time Max. time Ave. H.gap Max. H.gap # N. # C. R.-N. gap

50 T1 3 0.88 / 6.92 0.92 / 23.42 1.00 / 42.88 0.00 0.00 38 1 870 0.19
8 2.06 / 4.23 3.43 / 6.46 5.17 / 11.97 0.00 0.00 342 8 169 0.14
M/3 10.27 / 10.28 11.96 / 12.00 14.34 / 14.38 0.00 0.00 5 531 0.04

T2 3 0.89 / 10.22 1.11 / 24.57 1.23 / 36.98 0.03 0.10 27 232 0.65
8 6.31 / 8.64 6.76 / 13.35 7.63 / 22.05 0.17 0.27 105 1 238 0.56
M/3 6.02 / 9.31 8.11 / 28.29 12.33 / 42.95 0.32 0.67 110 8846 0.43

T3 3 0.86 / 375.52 0.94 / 543.26 1.06 / 911.48 0.05 0.21 426 54103 0.63
8 1.98 / 242.58 2.67 / 1717.30 3.63 / 3600 0.02 0.09 5890 187 349 0.51
M/3 10.41 / 11.41 11.66 / 15.99 14.31 / 19.34 0.00 0.00 45 4 073 0.26

T4 3 0.86 / 12.55 0.92 / 35.76 1.02 / 64.11 0.00 0.00 109 12 134 0.29
8 2.09 / 5.27 2.23 / 12.47 2.48 / 24.48 0.00 0.00 1235 38 768 0.21
M/3 10.05 / 10.34 12.61 / 16.17 16.08 / 29.25 0.00 0.00 45 2 291 0.10

T5 3 0.86 / 10.00 0.90 / 36.42 0.95 / 67.39 0.01 0.06 47 3 119 0.22
8 2.05 / 7.41 3.15 / 11.54 4.45 / 17.20 0.00 0.00 309 8 166 0.16
M/3 9.94 / 9.97 13.24 / 13.79 16.95 / 17.53 0.00 0.02 30 881 0.06

T6 3 0.86 / 15.11 0.93 / 35.66 1.00 / 75.59 0.02 0.08 32 1 190 0.19
8 2.16 / 9.17 2.78 / 13.75 3.95 / 18.61 0.00 0.00 120 2 079 0.14
M/3 10.52 / 11.00 13.21 / 15.46 17.47 / 22.42 0.00 0.00 78 1 048 0.05

T7 3 0.88 / 13.55 0.90 / 33.83 0.94 / 56.17 0.01 0.06 30 836 0.19
8 2.11 / 6.23 2.79 / 11.09 3.73 / 20.13 0.01 0.03 90 852 0.15
M/3 10.64 / 10.80 14.22 / 15.14 23.28 / 25.78 0.00 0.00 44 734 0.05

T8 3 0.84 / 19.38 0.92 / 55.63 1.06 / 96.66 0.01 0.07 46 1 653 0.22
8 1.86 / 12.14 2.81 / 25.90 3.94 / 35.58 0.01 0.02 234 2 837 0.18
M/3 10.00 / 11.42 12.63 / 16.19 17.52 / 20.91 0.01 0.04 113 1 889 0.08

T9 3 0.84 / 30.44 0.93 / 48.38 1.02 / 88.16 0.00 0.01 37 919 0.22
8 2.14 / 4.95 2.34 / 10.06 2.58 / 17.09 0.00 0.00 82 689 0.11
M/3 10.05 / 10.11 12.89 / 13.03 17.39 / 17.44 0.00 0.00 25 396 0.02

T10 3 0.86 / 50.28 0.92 / 196.93 1.00 / 399.92 0.00 0.00 128 8 938 0.31
8 2.05 / 72.84 2.54 / 271.21 3.36 / 607.36 0.00 0.05 1626 40 688 0.28
M/3 11.47 / 11.92 13.33 / 18.40 16.20 / 26.61 0.01 0.03 19 2 311 0.16
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Table 15
Complete results (M = 60)

M λ N Min. time Ave. time Max. time Ave. H.gap Max. H.gap # N. # C. R.-N. gap

60 T1 3 1.64 / 57.22 1.68 / 106.38 1.73 / 216.77 0.01 0.03 112 9 109 0.26
8 3.42 / 11.22 4.73 / 23.43 6.13 / 52.14 0.01 0.02 1055 26 202 0.18
M/3 25.42 / 25.45 29.98 / 30.07 34.44 / 34.55 0.00 0.00 11 1 331 0.04

T2 3 1.73 / 51.95 1.94 / 87.48 2.08 / 113.44 0.09 0.15 63 173 0.68
8 9.22 / 11.64 11.22 / 31.72 15.44 / 86.56 0.10 0.18 180 1 565 0.60
M/3 12.80 / 31.75 18.80 / 139.72 23.78 / 475.27 0.28 0.67 640 34 474 0.43

T3 3 1.53 / 1483.02 1.69 / 2078.92 1.78 / 2774.53 0.01 0.03 907 129 980 0.68
8 4.59 / 2492.08 5.63 / 3379.75 7.61 / 3600 0.00 0.00 9194 217 361 0.57
M/3 28.94 / 40.19 39.76 / 71.35 55.31 / 144.33 0.00 0.01 231 16 461 0.28

T4 3 1.66 / 39.89 1.72 / 78.68 1.84 / 149.28 0.00 0.02 218 27 240 0.34
8 3.73 / 21.81 4.54 / 47.74 5.95 / 69.00 0.00 0.02 1942 45 557 0.25
M/3 23.84 / 24.00 27.84 / 44.28 38.27 / 76.95 0.00 0.00 183 7 908 0.10

T5 3 1.64 / 87.09 1.68 / 176.49 1.70 / 353.95 0.01 0.03 105 6 772 0.28
8 3.56 / 22.58 4.74 / 42.48 5.30 / 88.52 0.00 0.01 522 9 537 0.19
M/3 25.41 / 26.64 33.90 / 34.97 45.61 / 46.53 0.00 0.00 74 2 151 0.06

T6 3 1.63 / 73.86 1.70 / 121.03 1.80 / 213.56 0.01 0.03 63 2 009 0.25
8 3.69 / 19.14 4.58 / 60.48 7.05 / 128.80 0.01 0.06 255 2 731 0.17
M/3 24.03 / 25.92 29.48 / 31.61 36.81 / 37.28 0.00 0.02 71 1 108 0.04

T7 3 1.58 / 86.83 1.67 / 166.65 1.72 / 342.38 0.01 0.04 69 1 535 0.26
8 3.39 / 16.73 4.22 / 47.02 5.11 / 107.98 0.04 0.13 209 1 050 0.17
M/3 25.31 / 25.47 30.17 / 31.03 37.70 / 38.48 0.00 0.01 37 669 0.04

T8 3 1.64 / 106.52 1.70 / 243.07 1.78 / 538.84 0.01 0.05 110 4 999 0.29
8 3.20 / 24.03 4.49 / 93.29 5.77 / 200.84 0.01 0.02 458 4 400 0.20
M/3 21.11 / 32.75 33.07 / 42.69 53.31 / 65.77 0.01 0.04 241 3 822 0.06

T9 3 1.66 / 52.69 1.71 / 154.15 1.80 / 313.33 0.00 0.01 60 1 455 0.26
8 3.69 / 19.14 4.73 / 54.03 6.86 / 113.72 0.00 0.00 189 1 195 0.15
M/3 24.94 / 25.00 34.29 / 34.67 49.33 / 50.36 0.00 0.00 53 786 0.02

T10 3 1.59 / 750.88 1.78 / 1214.11 2.14 / 2018.92 0.01 0.07 406 44 862 0.37
8 3.73 / 304.63 5.77 / 1999.35 7.89 / 3600 0.00 0.02 5022 130 801 0.33
M/3 26.91 / 35.08 33.90 / 57.88 40.05 / 104.86 0.00 0.01 47 6 215 0.17

Table 16
Complete results (M = 70)

M λ N Min. time Ave. time Max. time Ave. H.gap Max. H.gap # N. # C. R.-N. gap

70 T1 3 2.61 / 113.25 2.84 / 198.89 3.25 / 397.53 0.00 0.02 27 111 0.18
8 6.77 / 20.03 7.39 / 39.64 8.36 / 66.44 0.00 0.02 49 34 0.11
M/3 57.61 / 57.64 87.96 / 88.10 162.80 / 163.02 0.00 0.00 12 983 0.04

T2 3 2.70 / 156.08 2.89 / 544.15 3.14 / 1179.95 0.08 0.13 288 1 116 0.70
8 13.98 / 93.39 15.98 / 372.69 18.67 / 1147.52 0.18 0.25 1647 12 742 0.62
M/3 24.34 / 35.48 26.99 / 63.37 31.91 / 137.13 0.83 1.17 96 8 736 0.39

T3 3 – / – – / – – / – – – – – –
8 – / – – / – – / – – – – – –
24 57.81 / 64.08 71.64 / 93.12 105.66 / 143.19 0.00 0.00 107 8 285 0.24

T4 3 2.67 / 115.38 2.89 / 147.47 3.23 / 173.98 0.01 0.03 118 2 205 0.36
8 5.42 / 35.91 6.08 / 118.48 7.84 / 235.00 0.01 0.05 1282 16 876 0.27
M/3 48.75 / 55.77 59.65 / 64.03 68.77 / 74.61 0.00 0.00 48 2 773 0.07

T5 3 2.69 / 157.72 2.93 / 290.69 3.28 / 555.11 0.00 0.02 71 1 329 0.27
8 6.36 / 40.61 9.10 / 91.36 11.83 / 183.20 0.00 0.00 379 3 854 0.19
M/3 55.05 / 57.55 61.35 / 62.93 70.25 / 71.08 0.01 0.02 62 1 421 0.05

T6 3 2.67 / 149.09 2.86 / 250.62 3.11 / 493.36 0.00 0.00 55 1 010 0.24
8 5.89 / 59.16 6.80 / 115.19 7.64 / 183.14 0.01 0.03 229 1 394 0.17
M/3 55.33 / 57.52 60.44 / 68.80 75.95 / 83.45 0.00 0.02 202 2 209 0.04

T7 3 2.69 / 185.73 2.89 / 302.94 3.11 / 618.64 0.00 0.00 58 1 057 0.25
8 6.06 / 33.50 7.76 / 88.23 11.11 / 169.59 0.01 0.02 187 747 0.17
M/3 56.78 / 57.69 68.07 / 71.40 92.02 / 92.48 0.00 0.01 114 1 322 0.04

T8 3 2.69 / 211.36 2.93 / 389.43 3.20 / 767.75 0.00 0.00 79 1 764 0.27
8 5.27 / 42.34 7.99 / 162.98 9.92 / 362.38 0.01 0.06 340 2 695 0.19
M/3 56.83 / 57.27 65.77 / 68.28 77.05 / 79.83 0.00 0.02 94 1 281 0.05

T9 3 2.67 / 274.95 2.82 / 360.12 3.02 / 420.27 0.00 0.01 71 1 298 0.28
8 5.44 / 27.73 6.59 / 65.58 7.72 / 123.80 132 0.00 0.00 678 0.14
M/3 59.70 / 59.77 78.43 / 78.53 114.63 / 114.81 0.00 0.01 19 257 0.01

T10 3 – / – – / – – / – – – – – –
8 – / – – / – – / – – – – – –
M/3 58.72 / 62.39 73.14 / 86.93 86.44 / 118.45 0.00 0.00 39 4 118 0.15
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Table 17
Complete results (M = 80)

M λ N Min. time Ave. time Max. time Ave. H.gap Max. H.gap # N. # C. R.-N. gap

80 T1 3 4.25 / 226.06 4.36 / 449.46 4.69 / 673.59 0.01 0.03 36 167 0.18
8 8.73 / 77.61 12.36 / 178.58 17.73 / 248.89 0.00 0.01 98 59 0.14
M/3 113.38 / 113.42 138.93 / 139.05 192.14 / 192.20 0.00 0.00 46 5 168 0.04

T2 3 3.17 / 493.98 3.42 / 950.00 3.75 / 1300.17 0.08 0.23 345 1 268 0.73
8 6.44 / 498.95 8.36 / 1752.73 12.88 / 3600 0.15 0.23 4287 26 109 0.67
M/3 48.11 / 106.63 66.24 / 206.01 81.55 / 534.58 0.62 0.83 167 18 941 0.44

T3 3 – / – – / – – / – – – – – –
8 – / – – / – – / – – – – – –
M/3 113.00 / 143.00 133.76 / 243.82 163.30 / 424.98 0.00 0.00 230 21 730 0.26

T4 3 4.14 / 119.72 4.26 / 217.31 4.58 / 370.92 0.02 0.09 106 1 410 0.34
8 7.91 / 148.89 9.32 / 365.37 11.03 / 769.67 0.00 0.00 1160 10 065 0.28
M/3 102.25 / 107.81 126.35 / 132.66 147.61 / 151.61 0.00 0.02 71 5 570 0.08

T5 3 4.19 / 361.53 4.33 / 633.52 4.72 / 908.78 0.01 0.03 80 1 223 0.27
8 7.61 / 140.47 9.89 / 378.96 11.94 / 509.33 0.01 0.03 571 3 280 0.22
M/3 102.17 / 103.17 155.99 / 157.27 203.83 / 205.52 0.00 0.01 46 1 695 0.04

T6 3 4.22 / 216.55 4.36 / 423.55 4.70 / 605.80 0.00 0.00 66 919 0.24
8 8.92 / 145.06 10.92 / 342.31 16.84 / 557.34 0.01 0.03 323 1 278 0.19
M/3 105.33 / 115.39 123.68 / 131.93 138.92 / 154.73 0.01 0.01 112 1 420 0.03

T7 3 4.20 / 283.09 4.35 / 587.86 4.70 / 896.86 0.01 0.02 68 876 0.24
8 8.56 / 163.73 11.96 / 320.00 19.11 / 395.48 0.00 0.02 292 936 0.20
M/3 106.42 / 111.02 125.99 / 130.18 169.11 / 169.41 0.00 0.01 94 1 580 0.03

T8 3 4.17 / 436.36 4.23 / 855.20 4.31 / 1265.75 0.01 0.02 98 2 350 0.27
8 8.78 / 285.47 11.25 / 670.93 14.78 / 1007.44 0.00 0.01 663 4 666 0.23
M/3 94.16 / 101.80 122.59 / 126.52 157.27 / 158.17 0.00 0.02 100 1 862 0.04

T9 3 4.19 / 438.31 4.28 / 621.11 4.58 / 933.38 0.01 0.07 69 1 207 0.26
8 7.69 / 221.36 9.06 / 500.14 13.20 / 1222.34 0.00 0.00 391 1 801 0.18
M/3 120.64 / 120.95 159.73 / 159.92 228.17 / 228.47 0.00 0.01 21 372 0.01

T10 3 – / – – / – – / – – – – – –
8 – / – – / – – / – – – – – –
M/3 152.84 / 212.98 184.10 / 351.64 257.14 / 590.39 0.00 0.01 220 25 319 0.16
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